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1 Introduction 
Can the poles of closed-loop system obtained from 
a given linear time invariant system by constant 
output feedback, be placed at desired positions? 
This simple question is known in linear systems 
theory as pole assignment by constant output 
feedback and has been intensively studied in the last 
forty nine years.  
In [1] the pole assignment problem by constant 
output feedback for linear time invariant systems 
with m inputs, p outputs, and McMillan degree n is 
studied for the first time. In particular in [1] has 
been proved that p poles of closed-loop system are 
assignable almost arbitrarily by constant output 
feedback. In [2] and [3] it was proved that, if the 
McMillan degree n does not exceed (m+ p-1), then 
an almost arbitrary set of distinct closed-loop poles 
is assignable by real constant output feedback. 
Alternative proofs of the above condition also are 
given in [4-6]. A method for assigning min(n, p + m 
- 1) (or more) closed-loop poles by linear output 
feedback is presented   in [7]. In [8], by using the 
dominant morphism theorem has been proved that 
the condition mp > n is a sufficient condition for the 
pole assignment map to be almost surjective. [9] 
proved that arbitrary pole assignment is not possible 
in general for real linear time invariant systems with  
m = p = 2 and n = 4. Furthermore, [9] established 
the necessity of condition mp > n for the solution of 
arbitrary pole placement by constant output 
feedback over the field of real numbers. In [10] it 
was proved that, if mp = n the complex pole 
assignment map is surjective for generic systems. 
For some special cases, constructive procedures for 
pole assignment  by constant output feedback were 
developed by in [11]. In [12] has been proved that, 
if the system is generic and mp > n, the pole 

assignment map is surjective. An alternative proof 
of the above result is given in [13]. Later, it was 
proved in [14] and [15, 16] that the geometric 
techniques used in [12] actually are based on a 
linearization of the pole assignment map around the 
dependent compensator. In [17] has been proved 
that, if mp = n and both m and p are even, there 
exists an open subset of such systems where the real 
pole placement map is not surjective. [18] proved 
that, if mp = n, min(m, p) =2 and max(m, p) is even, 
there is a non-empty subset of such systems where 
arbitrary pole placement by real constant output 
feedback is impossible. In [19] it was proved, that 
arbitrary pole placement by constant output 
feedback of unitary rank is generically not possible 
even if (m + p) > n holds true. In [20] have been 
derived new expressions for the characteristic 
polynomial of a linear system subject to constant 
output feedback. [21] established a necessary 
condition for pole assignment by constant output 
feedback; this condition is simply checked by 
computing the Smith-McMillan form of the open-
loop system. Furthermore, the necessary condition 
in [21] shows that the solution of the pole 
assignment problem by constant output feedback 
depends on the finite zero structure of the open- 
loop system. Necessary and sufficient conditions for 
pole assignment by complex output feedback for 
symmetric and Hamiltonian systems have been 
derived in [22]. A new analytical solution to the 
problem of pole assignment via constant output 
feedback under the condition (m + p) > n, is 
presented in [23]. A necessary and sufficient 
condition and a new algorithm for the solution of 
pole assignment by constant output feedback were 
derived in [24]. New sufficient conditions as well as 
a linear method for the solution of the output 
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feedback  pole  assignment  problem were presented 
in [25]. [26] proved that the problem of pole 
placement via constant output feedback is NP-hard.  
[27] proved that for the class of linear time invariant 
systems with m inputs, p outputs, and McMillan 
degree n, the condition (m + p) > n is necessary for 
the solution of the arbitrary pole assignment 
problem by constant output feedback. Numerical 
methods for the solution of pole placement by 
constant output feedback have been derived in [14], 
[16], [28], [29], [30], and [31], and the papers cited 
therein. Many other papers have been published in 
the past in this area; for more complete references, 
we refer the reader to the survey articles [32], [33], 
and [34]. The problem of pole placement by 
constant output feedback is difficult [35] and 
challenging; it remains an open problem in linear 
systems theory.  
In this paper, are established explicit necessary 
for the solution of arbitrary pole assignment 
problem by   constant output feedback for the 
class of linear time invariant systems. 
 
 

2 Problem Formulation 
Consider a linear controllable and observable 

system described by the following state-space 

equations 

   𝐱  t =Ax(t) + Bu(t)                       (1)              

y(t) = Cx(t)                           (2) 

and the control low 

u(t) = – Fy(t) + v(t)                   (3) 

where F is an m x p real matrix, v(t)  is the 

reference input vector of dimensions mx1, x(t) is the 

state vector of dimensions n x 1, u(t) is the vector of 

inputs of dimensions m x 1 and y(t) is the vector of 

outputs of dimensions p x 1 and A, B and C are real 

matrices of dimensions  n x n, n x m and n x p,   

respectively.The transfer function matrix of 

system (1) and (2) is given by 

                          𝐓 s = 𝐂 𝐈s − 𝐀 −1𝐁                 (4)            

By applying the constant output feedback (3) to the 

system (1) and (2) the state-space equations of 

closed–loop system are 

   𝐱  t =(A-BFC) x(t) + Bv(t)             (5)            

y(t)=Cx(t)                             (6) 

Let R be the field of real numbers. Also let R[s] be 

the ring of polynomials with coefficients in R. Let 

c(s) be a given arbitrary monic polynomial over 

R[s] of degree n. The pole assignment problem 

considered in this paper can be stated as follows: 

Does there exist a constant output feedback (3) such 

that  

                 det⁡[𝐈s − 𝐀 + 𝐁𝐅𝐂] = c s                     (7) 

if so, give conditions for existence. 

 

 

3 Basic concepts and preliminary 

results 
Let us first introduce some notations that are used 

throughout the paper. Let D(s) be a nonsingular 

matrix over R[s]   of dimensions m x m, write degci 

for the degree of column i of  D(s). if 

degciD(s)≥ degcjD(s), i< j                (8) 

the matrix D(s) is said to be column degree ordered. 

Denote Dn the highest column degree coefficient 

matrix of  D(s).The matrix D(s) is said to be column 

reduced if the real matrix Dn is nonsingular. The 

matrix D(s) is said to be column monic if its highest 

column degree coefficient matrix is the identity 

matrix. A polynomial matrix U(s) of dimensions kxk 

is said to be unimodular if and only if has 

polynomial inverse. Two polynomial matrices A(s) 

and B(s) having the same numbers of columns are 

said to be relatively right prime if and only if there 

are matrices X(s) and Y(s) over R[s]  such that 

X(s)A(s) + Y(s)B(s)=I                 (9) 

where I is the identity matrix of dimensions l x l, l is 

the number of columns of the polynomial matrices 

A(s) and B(s). Let D(s) be a nonsingular matrix over 

R[s] of dimensions m x m, then there exist 

unimodular matrices U(s) and V(s) over R[s] such 

that  

     D(s)=U(s) diag [a1(s), a2(s), ….am(s)]V(s)      (10) 

where the polynomials ai(s) for i=1,2, .., m are 

termed invariant polynomials of D(s) and have the 

following property 

            ai(s) divides ai+1(s), for i =1,2,….m-1      (11) 

Furthermore we have that 

  ai(s) =
d i (𝑠)

d i−1 𝑠 
, for 𝑖 = 1,2,…….m         (12) 

where do(s) =1 by definition and di(s) is the monic 

greatest common divisor of all minors of order i in 

D(s), for i=1,2,….., m. Two polynomial matrices 

A(s) and B(s) of appropriate dimensions are 

equivalent over R[s] if and only if there exist 

unimodular matrices P1(s) and P2(s) over R[s], such 

that A(s) = P1(s) B(s) P2(s). If two polynomial 

matrices are equivalent over R[s], then they have 
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the same invariant polynomials. The relationship  

(10) is known as the Smith – McMillan form of D(s) 

over R[s]. The system (1) and (2) is controllable if 

and only if  

                  rank [Is – A , B] = n                          (13)            

for all complex numbers s. 

The system (1) and (2) is observable if and only if                 

                                   rank  
𝐂

𝐈s − 𝐀
  = n                  (14) 

for all complex numbers s. 

If the system (1) and (2) is controllable, then the 

minimal column indices of singular pencil (13) are 

the controllability indices of system (1) and (2). If 

the system (1) and (2) is observable, then the 

minimal row indices of singular pencil (14) are the 

observability indices of system (1) and (2).  

Let ν1≥ν2≥……≥νm  be the ordered list of 

reachability indices of system (1). Then ν=max 𝜈i 

for i=1, 2, …, m is called  reachability index of 

system (1), [36]. Let μ1≥μ2≥……≥𝜇𝑝   be the 

ordered list of observability indices of system (1). 

Then μ=max 𝜇i  for i=1, 2, …, p  is called 

observability index of system (1), [36]. Let 

rank[B]=m and rank[C]=p. Then the reachability 

index ν and the observability index μ of system (1) 

and (2) satisfy the following relationships [37] 

                               n/m≤ν≤ n−m+1)            (15) 

                                    n/p≤μ≤ n−p+1)             (16) 

Definiton 1. Relatively right prime polynomials 

matrices D(s) and N(s) of dimensions m x m and 

 p x m respectively with D(s) to be column reduced 

and column degree ordered such that  

𝐂 𝐈s − 𝐀 −1𝐁 = 𝐍 s 𝐃−1(𝑠)        (17) 

are said to form a standard right matrix fraction 

description of system (1) and (2).  

The column degrees of the matrix D(s) are the 

controllability indices of system (1) and (2). 

Let A be a matrix over R of dimensions n x n. The 

quantity 

                                 tr[𝐀]   = Σ
ι=1
n aii                      (18) 

is called trace of the matrix A. Let A be a matrix 

over R of size n x n and let a(s) be the 

characteristic polynomial of  the matrix A given by  

     a(s) =  sn   +  an−1𝑠
n−1 + …. + a1s  +  a0    (19)                                                                    

Then the coefficient  an−1 of the characteristic 

polynomial a(s) is given by [38] 

                               an−1 = −tr[𝐀] = −Σ
ι=1
n aii       (20)      

Every column monic polynomial matrix M(s) of 

dimensions m x m with column degrees ν1, ν2, …, νm  

such that 

                          ν1 = ν2=, …,= νm = ν               (21) 

can be written as follows [39] 

                           M(s) = I s
ν
 +𝛴𝜄=𝜊

𝜈−1Mi s
i
           (22) 

where Mi for i=1,2, .., m are real matrices of 

dimensions m x m. 
For every column monic polynomial matrix is 

defined the following matrix over R [39]                                          

                               𝐍 =   
𝟎 𝐈
𝐊  𝐋

                             (23) 

where I is the identity matrix of size m(ν-1)xm(ν-1). 

The real matrices K and L of appropriate 

dimensions are given by  

              K = −M0  and   L = [−M1, …., −Mν-1](24) 

The matrix (23) is termed first companion form of 

polynomial matrix M(s). In [39] is proven that the 

polynomial matrices [M(s), I] and [Is – N] are 

equivalent over R[s] and therefore  

                          det[Is – N] = det[M(s)]              (25) 

From (25) it follows that the zeros of the column 

monic polynomial matrix M(s) and the eigenvalues 

of the matrix N are the same. From the structure of 

matrix N and (18) it follows that  

                              tr[N] = tr [−Mν-1]                 (26) 

The following Lemmas are needed to prove the 

main theorem of this paper. 

Lemma 1, [40]. Let D(s), N(s)be a standard right 

matrix fraction description of system (1). Also let νi 

for i=1,2,….m be the controllability indices of (1) 

and (2). Then for every m x p real matrix F we have:  

(a)The polynomial matrices N(s) and   𝐃 s +
 +𝐅𝐍(s) are relatively right prime over R[s]. 

(b)The matrix   𝐃 s +  𝐅𝐍(s)   is column reduced 

and column degree ordered and its column degrees 

are the numbers νi for i=1,2,…m. 

 (c)The open-loop system (1) and (2) and the closed 

– loop system (5) and (6) have the same 

controllability indices. 

Proof: Let D(s) and N(s) be a standard matrix 

fraction description of (1) and (2). Then for the 

transfer function of closed – loop system (5), (6) we 

have that 
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𝐂 𝐈s − 𝐀 + 𝐁𝐅𝐂 −1𝐁 = 𝐍 s  𝐃 s +
 +𝐅𝐍 s  −1                                                                 (27) 

We can write  

       
𝐍(𝐬)

𝐃(s) +  𝐅𝐍(s)
 =  

𝐈p O

𝐅 𝐈m
  

𝐍(s)
𝐃(s)

              (28) 

Since the matrix  

 
𝐈p O

𝐅 Im
                           (29) 

is unimodular and the matrices N(s) and D(s) are 

relatively right prime over R[s], we have from (28) 

that the matrices  𝐃 s +  𝐅𝐍(s)  and N(s) are 

relatively right prime over R[s]. This is condition 

 a  of the Lemma.  

Since the open – loop system (1) and (2) is strictly 

proper with controllability indices νi for i = 1, 2 …, 

m we have that  

degciN(s) <degciD(s) = νi, for i=1,2,…., m      (30) 

Since F is real matrix it follows from (30) that 

degciFN(s) < degciD(s) = νi, i= 1,2,…., m  (31) 

Since by definition the matrix D(s) is column 

reduced and column and degree ordered, it follows 

from (28) that the matrix  𝐃 s +  𝐅𝐍(s)  is column 

reduced and column degree ordered and its column 

degrees are the numbers νi for i=1,2,…m. This is 

condition (b) of the Lemma.  

Since the matrices  𝐃 s +  𝐅𝐍(s)   and N(s) are 

relatively right prime over R[s] and the matrices 

D(s) and    𝐃 s +  𝐅𝐍(s)  are column reduced with 

the same column degrees, we conclude that the open 

– loop system (1) and (2)  the closed – loop system 

(5) and (6) have the same controllability indices. 

This is condition (c) of the Lemma and the proof is 

complete.  

Lemma 2, [41]. Let D(s), N(s) be a standard right 

matrix fraction description of system (1) and (2). 

Then for every m x p real matrix F the polynomial 

matrices [Is – A+BFC] and [D(s)+FN(s)] have the 

same nonunit invariant polynomials. 

Proof. Let D(s) and N1(s) are relatively right 

prime polynomial matrices over R[s] of respective 

dimensions m x m and n x m such that  

 𝐈s − 𝐀 −1𝐁 = 𝐍1(s)𝐃−1(𝑠)                 (32) 

We have that  

 𝐈s −  𝐀 𝐍1 s = 𝐁𝐃(s)              (33) 

We add BFC𝐍1 s  to both sides of the above 

identity and rearrange to get  

 𝐈s − 𝐀 + 𝐁𝐅𝐂 −1B=𝐍1 s  𝐃 s + 𝐅𝐂𝐍1 s  −134) 

Since [𝐈s −   𝐀 and B are relatively left prime over 

R[s] by controllability of (1) and (2) and since  

 𝐈s −  𝐀 + 𝐁𝐅𝐂, 𝐁 =  𝐈s − 𝐀, 𝐁  
𝐈n 𝟎
𝐅𝐂  𝐈m

       (35) 

it follows that  𝐈s − 𝐀 + 𝐁𝐅𝐂  and B are relatively 

left prime over R[s]. On the other hand D(s) and 

N1(s) are relatively right prime over R[s] and  

 
𝐍1  s 

𝐃 s +  𝐅𝐂𝐍1 s 
 =

=  
𝐈n 𝟎
𝐅𝐂 𝐈m

    
𝐍1  s 

𝐃 s 
                                                (36)               

Hence  𝐃(s) +  𝐅𝐂𝐍𝟏(s) and 𝐍1 s  are relatively 

right prime over R[s]. It follows that the matrices                  

 𝐈s −  𝐀 + 𝐁𝐅𝐂  and  𝐃(s) +  𝐅𝐂𝐍1(s)  or 

equivalently the matrices  𝐈s −  𝐀 + 𝐁𝐅𝐂  and 
 𝐃 s +  𝐅𝐍(s)  must share the same nonunit 

invariant polynomials. This completes the proof of 

the Lemma.  

Lemma 3.  Let D(s), N(s) be a standard right matrix 

fraction description of system (1) and (2) with D(s) 

to be column monic. Then the characteristic 

polynomial c(s) of closed-loop system (5) and (6) is 

given by 

                             det[D(s)+FN(s)] = c(s)         (37) 

 Proof. The characteristic polynomial c(s) of closed-

loop system (5) and (6) is given by 

             det[Is – A+BFC] =𝛱𝜄=1
𝑘 ai(s)] = c(s)      (38) 

where ai(s) for i=1,2,…k are the nonunit invariant 

polynomials of the matrix [Is – A+BFC] [38]. By 

Lemma 2, the polynomial matrices [Is – A+BFC] 

and [D(s)+FN(s)] have the same nonunit invariant 

polynomials and therefore from (10) we have  

                  det[D(s)+FN(s)] = 𝛱𝜄=1
𝑘 ai(s)]             (39) 

Relationship (37) follows from (38) and (39) and the 

proof is complete. 

 

 

4 Problem Solution 
Let D(s), N(s) be a standard right matrix fraction 

description of completely controllable and 

observable system (1) and (2) with D(s) to be 

column monic. Also let ν1≥ν2≥……≥νm be the 
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ordered list of controllability indices of (1) and (2). 

By Lemma 1 the column degrees of polynomial 

matrix D(s) are ν1, ν2, …, νm. In what follows, we 

consider the special class of systems for which 

                            ν1 = ν2=, …, = νm = ν               (40) 

Using (22) the column monic polynomial matrix 

D(s) and the polynomial matrix N(s) can be written 

as follows 

                          D(s) = I s
ν
 +𝛴𝜄=𝜊

𝜈−1Di s
i
              (41) 

                               N(s) = 𝛴𝜄=𝜊
𝜈−1Ni s

i 
                (42) 

where Di  and Ni  for i=0,1,….,ν-1 are real matrices 

of dimensions  m x m and p x m respectively. Let  

                 𝐘 = [𝐃0   
𝑇    𝐍0

𝑇]
T
  and 𝐙 = [𝐈   𝐍0

𝑇  ]𝑇    (43) 

The following theorem is the main result of this 
paper and gives explicit necessary conditions for the 
solution of the pole assignment problem by constant 
output feedback for a class of completely 
controllable and observable linear time invariant 
systems.  

Theorem 1. Let D(s), N(s) be a standard right 
matrix fraction description of controllable and 
observable system (1) and (2) with D(s) to be 
column monic.  Also let ν1≥ν2≥……≥νm be the 
ordered list of controllability indices of system (1) 
and (2).  Suppose that relationship (40) is satisfied.   
Then the pole assignment problem by constant 
output feedback has a solution only if 

(a) Nν-1≠ 0 

(b) The rows of the matrices Y and Z span the 
same linear space over R. 

 Proof. Let D(s), and N(s) be a standard right matrix 
fraction description of controllable and observable 
system (1) and (2) with D(s) to be column monic. 
Also let c(s) be arbitrary monic polynomial over 
R[s] of degree n. Suppose that the pole assignment 
problem by constant output feedback has a solution. 
From Lemma 3 it follows that 

                  det[D(s)+FN(s)] = c(s)                  (44) 

Since by assumption the polynomial matrix D(s) is 
column monic and  column degree ordered from 
Lemma 1 it follows that the polynomial matrix 
D(s)+FN(s) is also column monic and column 
degree ordered and its column degrees are the 
numbers νi for i=1,2,…m. Since by assumption 
relationship (40) is satisfied, the first companion 
form of the polynomial matrix D(s)+FN(s) is given 
by 

                            𝐍 =   
𝟎 𝐈
𝐊  𝐋

                             (45) 

where I is the identity matrix of size m(ν-1)xm(ν-1). 

The real matrices K and L of appropriate 

dimensions are given by  

                            K =− (D0+FN0)                      (46)                                               

               L = [− (D1+FN1), …., − (Dν-1+FNν-1)](47) 

Since the polynomial matrices [D(s)+FN(s)], I] and 

[Is – N] are equivalent over R[s] [39] we have that  

           det[D(s)+FN(s)]] = det[Is−N] = c(s)       (48) 

From (45), (46), (47), (48), (20) and (26) it follows 

that the coefficient cn−1 of c(s) is given by  

                            cn−1 =− tr [− (Dν-1+FNν-1)]     (49) 

Since by assumption c(s) is arbitrary monic  

polynomial of degree n over R[s], cn−1 is arbitrary 

real number. This implies that 

                                       Nν-1≠ 0                          (50) 

This is condition (a) of Theorem 1. Since c(s) is by 
assumption arbitrary monic polynomial of degree n 
over R[s], we assume without any loss of generality 
that all roots of c(s) are nonzero. This implies that 
the columns of the matrix N are linearly 
independent over R.  From the above it follows that 
the matrix (D0+FN0) is nonsingular. Let                 

                                          D0+FN0 = T               (51) 

where T is nonsingular matrix of appropriate 

dimensions. (51) is rewritten as follows 

                               𝐓−1 D0 +  𝐓−1 FN0 = I             (52) 

Let E= 𝐓−1 F. Using (43) relationship (52) can be 

rewritten as follows 

                              𝐓
−1 𝐄
𝟎  𝐈

 Y = Z                      (53) 

Since by assumption, matrix  𝐓−1 is nonsingular the 
transformation matrix in (53) is also nonsingular 
and therefore the rows of the matrix Y span the 
same linear space over R as those of Z. This is 
condition (b) of Theorem 1 and the proof is 
complete. 

Corollary 1. Let D(s), N(s) be a standard right 
matrix fraction description of controllable and 
observable system (1) and (2) with D(s) to be 
column monic.  Also let ν1≥ν2≥……≥νm be the 
ordered list of controllability indices of system (1) 
and (2). Further, let D0=0. Suppose that relationship 
(40) is satisfied. Then the pole assignment problem 
by constant output feedback has a solution only if 
p≥m. 

Proof. Suppose that the pole assignment problem by 
constant output feedback has a solution. Since by 
assumption D0=0, it follows from (51) and (52) that 

WSEAS TRANSACTIONS on SYSTEMS Konstadinos H. Kiritsis

E-ISSN: 2224-2678 340 Volume 18, 2019



                               𝐓−1 FN0 = I                              (54) 

From (54) it follows that (𝐓−1 F) is the left inverse 
of p x m real matrix N0. This implies that 

                           rank [N0] = m                        (55) 

From (55) it follows that p≥m and the proof is 
complete. 

Remark. The arbitrary pole assignment problem by 
constant output feedback for linear time invariant 
systems is probably one of the most prominent open 
questions in linear systems theory [32], [33] and 
[44]. Besides the trivial conditions of controllability 
and observability there are only a few explicit 
necessary conditions in the literature for the 
solvability of arbitrary pole assignment problem by 
constant output feedback for linear time invariant 
systems.  The main   theorem of this paper adds yet 
two explicit necessary conditions to existing ones. 
This clearly demonstrates the originality of the 
contribution of main theorem of this paper with 
respect to existing results. 
It is well known that the solution of the arbitrary 
pole assignment problem by constant output feed-
back depends on the relationship between the 
number of inputs and outputs and the McMillan 
degree of the open–loop system [9] and [27]. 
Corollary 1 of this paper shows that the solution of 
the arbitrary pole assignment problem by constant 
output feedback depends on the relationship 
between the number of inputs and the number of 
outputs. This demonstrates the originality of the 
contribution of Corollary 1 of Theorem 1, with 
respect to existing results. 
Remark 2. The problem of arbitrary pole 
placement by constant output feedback in its full 
generality is NP-hard [26]; therefore it is not 
polynomial-time solvable [42, 43]. This means that 
it is extremely difficult [42] to obtain an efficient 
algorithm to correctly solve all instances of the 
problem [28]. This justifies investigation of the 
solvability of the arbitrary pole placement problem 
by constant output feedback for special classes of 
linear time invariant systems (1) and (2). 

Example: Consider a completely controllable and 
observable system (1) specified by [2] 

 

𝐀 =  

0 1
0 0

  0 0
    0 0

0 0
0 0

    0 1
    0 0

  

𝐁 =   

0 0
1 0
0 0
0 1

  

C =  
1 0       0     0
0   0        1     0   

  

m=2, p=2 and n=4 

The task is to check if the pole assignment problem 

by constant output feedback has a solution. The 

transfer function of the given system is given by 

T(s) =  
 1/𝑠2  0

 0  1/𝑠2  

We define the matrices 

D(s) = diag[𝑠2 , 𝑠2] 

N(s) = [1, 1] 

It is obvious that matrices D(s) and N(s) are 
relatively right prime over R[s] and the matrix D(s) 
is column reduced and column degree ordered. 
Since  

T(s) = 𝐍 s 𝐃−1(𝑠) 

we conclude that the polynomial matrices D(s), N(s) 
form a standard right matrix fraction description of 
the given system. The column degrees of the 
polynomial matrix D(s) are  

ν1 = ν2 = 2 

Assumption (40) is satisfied and therefore the 
polynomial matrices D(s) and N(s) can be rewritten 
as follows 

D(s) =  
 1  0
 0 1 

  𝑠2 +   0  0
 0 0 

 s +  
 0  0
 0 0

  

N(s) =   0  0
 0 0 

 s +  
 1  0
 0 1 

  

We have that  

D1 =     0  0
 0 0 

    and    D0 =  
 0  0
 0 0 

  

 

N1 =     0  0
 0 0

    and    N0 =  
 1  0
 0 1 

  

Since  

N1 =     0 0
 0 0 
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from Theorem 1 it follows that arbitrary pole 
assignment by constant output feedback is 
impossible.  
 
 

5 Conclusions 
The pole assignment problem by constant output 
feedback for linear time invariant systems is very 
broadly studied problem and is probably one of the 
most prominent open questions in linear systems 
theory. Considerable progress has been achieved 
over the years but we are still far from finding exact 
necessary and sufficient conditions that guarantee 
the solvability of the problem. In this paper, are 
established explicit necessary conditions for the 
solution of arbitrary pole assignment problem by 
constant output feedback for a class of linear time 
invariant systems. The main results obtained for 
linear continuous -time systems hold also for linear 
discrete-time systems. We believe that our results 
are useful for further understanding of this 
important and longstanding open problem. 
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